八年級(jí)上冊(cè)教案數(shù)學(xué)教案
八年級(jí)上冊(cè)教案數(shù)學(xué)教案篇1
一、 內(nèi)容和內(nèi)容解析
1.內(nèi)容
三角形高線、中線及角平分線的概念、幾何語(yǔ)言表達(dá)及它們的畫(huà)法.
2.內(nèi)容解析
本節(jié)內(nèi)容概念較多,有三角形的高、中線、角平分線和重心等有關(guān)概念;需要學(xué)生動(dòng)手的頻率也較高,要掌握任意三角形的高、中線、角平分線的畫(huà)法,培養(yǎng)學(xué)生動(dòng)手操作及解決問(wèn)題的能力;鼓勵(lì)學(xué)生主動(dòng)參與,體驗(yàn)幾何知識(shí)在現(xiàn)實(shí)生活中的真實(shí)性,激發(fā)學(xué)生熱愛(ài)生活、勇于探索的思想感情.
理解三角形高、角平分線及中線概念到用幾何語(yǔ)言精確表述,這是學(xué)生在幾何學(xué)習(xí)上的一個(gè)深入.學(xué)習(xí)了這一課,對(duì)于學(xué)生增長(zhǎng)幾何知識(shí),運(yùn)用幾何知識(shí)解決生活中的有關(guān)問(wèn)題,起著十分重要的作用.它也是學(xué)習(xí)三角形的角、邊的延續(xù)以及三角形全等、相似等后繼知識(shí)一個(gè)準(zhǔn)備.
本節(jié)的重點(diǎn)是了解三角形的高、中線及角平分線概念的同時(shí)還要掌握它們的畫(huà)法,難點(diǎn)是鈍角三角形的高的畫(huà)法及不同類(lèi)型的三角形高線的位置關(guān)系.
二、目標(biāo)和目標(biāo)解析
1.教學(xué)目標(biāo)
(1)理解三角形的高、中線與角平分線等概念;
(2)會(huì)用工具畫(huà)三角形的高、中線與角平分線;
2.教學(xué)目標(biāo)解析
(1)經(jīng)歷畫(huà)圖實(shí)踐過(guò)程,理解三角形的高、中線與角平分線等概念.
(2)能夠熟練用幾何語(yǔ)言表達(dá)三角形的高、中線與角平分線的性質(zhì).
(3)掌握三角形的高、中線與角平分線的畫(huà)法.
(4)了解三角形的三條高、三條中線與三條角平分線分別相交于一點(diǎn).
三、教學(xué)問(wèn)題診斷分析
三角形的高線的理解:三角形的高是線段,不是直線,它的一個(gè)端點(diǎn)是三角形的頂點(diǎn),另一個(gè)端點(diǎn)在這個(gè)頂點(diǎn)的對(duì)邊或?qū)吽诘闹本€上.
三角形的中線的理解:三角形的中線也是線段,它是一個(gè)頂點(diǎn)和對(duì)邊中點(diǎn)的連線,它的一個(gè)端點(diǎn)是三角形的頂點(diǎn),另一個(gè)端點(diǎn)是這個(gè)頂點(diǎn)的對(duì)邊中點(diǎn).
三角形的角平分線的理解:三角形的角平分線也是一條線段,角的頂點(diǎn)是一個(gè) 端點(diǎn),另一個(gè)端點(diǎn)在對(duì)邊上.而角的平分線是一條射線,即就是說(shuō)三角形的角平分線與通常的角平線有一定的聯(lián)系又有本質(zhì)的區(qū)別.
八年級(jí)上冊(cè)教案數(shù)學(xué)教案篇2
16.1.2分式的基本性質(zhì)
一、教學(xué)目標(biāo)
1.理解分式的基本性質(zhì).
2.會(huì)用分式的基本性質(zhì)將分式變形.
二、重點(diǎn)、難點(diǎn)
1.重點(diǎn):理解分式的基本性質(zhì).
2.難點(diǎn):靈活應(yīng)用分式的基本性質(zhì)將分式變形.
3.認(rèn)知難點(diǎn)與突破方法
教學(xué)難點(diǎn)是靈活應(yīng)用分式的基本性質(zhì)將分式變形.突破的方法是通過(guò)復(fù)習(xí)分?jǐn)?shù)的通分、約分總結(jié)出分?jǐn)?shù)的基本性質(zhì),再用類(lèi)比的方法得出分式的基本性質(zhì).應(yīng)用分式的基本性質(zhì)導(dǎo)出通分、約分的概念,使學(xué)生在理解的基礎(chǔ)上靈活地將分式變形.
三、例、習(xí)題的意圖分析
1.P7的例2是使學(xué)生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應(yīng)用分式的基本性質(zhì),相應(yīng)地把分子(或分母)乘以或除以了這個(gè)整式,填到括號(hào)里作為答案,使分式的值不變.
2.P9的例3、例4地目的是進(jìn)一步運(yùn)用分式的基本性質(zhì)進(jìn)行約分、通分.值得注意的是:約分是要找準(zhǔn)分子和分母的公因式,最后的結(jié)果要是最簡(jiǎn)分式;通分是要正確地確定各個(gè)分母的最簡(jiǎn)公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡(jiǎn)公分母.
教師要講清方法,還要及時(shí)地糾正學(xué)生做題時(shí)出現(xiàn)的錯(cuò)誤,使學(xué)生在做提示加深對(duì)相應(yīng)概念及方法的理解.
3.P11習(xí)題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號(hào).這一類(lèi)題教材里沒(méi)有例題,但它也是由分式的基本性質(zhì)得出分子、分母和分式本身的符號(hào),改變其中任何兩個(gè),分式的值不變.
“不改變分式的值,使分式的分子和分母都不含‘-’號(hào)”是分式的基本性質(zhì)的應(yīng)用之一,所以補(bǔ)充例5.
四、課堂引入
1.請(qǐng)同學(xué)們考慮:與相等嗎?與相等嗎?為什么?
2.說(shuō)出與之間變形的過(guò)程,與之間變形的過(guò)程,并說(shuō)出變形依據(jù)?
3.提問(wèn)分?jǐn)?shù)的基本性質(zhì),讓學(xué)生類(lèi)比猜想出分式的基本性質(zhì).
五、例題講解
P7例2.填空:
[分析]應(yīng)用分式的基本性質(zhì)把已知的分子、分母同乘以或除以同一個(gè)整式,使分式的值不變.
P11例3.約分:
[分析]約分是應(yīng)用分式的基本性質(zhì)把分式的分子、分母同除以同一個(gè)整式,使分式的值不變.所以要找準(zhǔn)分子和分母的公因式,約分的結(jié)果要是最簡(jiǎn)分式.
P11例4.通分:
[分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡(jiǎn)公分母.
八年級(jí)上冊(cè)教案數(shù)學(xué)教案篇3
教學(xué)目標(biāo)
1.知識(shí)與技能
領(lǐng)會(huì)運(yùn)用完全平方公式進(jìn)行因式分解的方法,發(fā)展推理能力.
2.過(guò)程與方法
經(jīng)歷探索利用完全平方公式進(jìn)行因式分解的過(guò)程,感受逆向思維的意義,掌握因式分解的基本步驟.
3.情感、態(tài)度與價(jià)值觀
培養(yǎng)良好的推理能力,體會(huì)“化歸”與“換元”的思想方法,形成靈活的應(yīng)用能力.
重、難點(diǎn)與關(guān)鍵
1.重點(diǎn):理解完全平方公式因式分解,并學(xué)會(huì)應(yīng)用.
2.難點(diǎn):靈活地應(yīng)用公式法進(jìn)行因式分解.
3.關(guān)鍵:應(yīng)用“化歸”、“換元”的思想方法,把問(wèn)題進(jìn)行形式上的轉(zhuǎn)化,達(dá)到能應(yīng)用公式法分解因式的目的.
教學(xué)方法
采用“自主探究”教學(xué)方法,在教師適當(dāng)指導(dǎo)下完成本節(jié)課內(nèi)容.
教學(xué)過(guò)程
一、回顧交流,導(dǎo)入新知
【問(wèn)題牽引】
1.分解因式:
(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;
(3)x2-0.01y2.
【知識(shí)遷移】
2.計(jì)算下列各式:
(1)(m-4n)2;(2)(m+4n)2;
(3)(a+b)2;(4)(a-b)2.
【教師活動(dòng)】引導(dǎo)學(xué)生完成下面兩道題,并運(yùn)用數(shù)學(xué)“互逆”的思想,尋找因式分解的規(guī)律.
3.分解因式:
(1)m2-8mn+16n2(2)m2+8mn+16n2;
(3)a2+2ab+b2;(4)a2-2ab+b2.
【學(xué)生活動(dòng)】從逆向思維的角度入手,很快得到下面答案:
解:(1)m2-8mn+16n2=(m-4n)2;(2)m2+8mn+16n2=(m+4n)2;
(3)a2+2ab+b2=(a+b)2;(4)a2-2ab+b2=(a-b)2.
【歸納公式】完全平方公式a2±2ab+b2=(a±b)2.
二、范例學(xué)習(xí),應(yīng)用所學(xué)
【例1】把下列各式分解因式:
(1)-4a2b+12ab2-9b3;(2)8a-4a2-4;
(3)(x+y)2-14(x+y)+49;(4)+n4.
【例2】如果x2+axy+16y2是完全平方,求a的值.
【思路點(diǎn)撥】根據(jù)完全平方式的定義,解此題時(shí)應(yīng)分兩種情況,即兩數(shù)和的平方或者兩數(shù)差的平方,由此相應(yīng)求出a的值,即可求出a3.
三、隨堂練習(xí),鞏固深化
課本P170練習(xí)第1、2題.
【探研時(shí)空】
1.已知x+y=7,xy=10,求下列各式的值.
(1)x2+y2;(2)(x-y)2
2.已知x+=-3,求x4+的值.
四、課堂總結(jié),發(fā)展?jié)撃?/p>
由于多項(xiàng)式的因式分解與整式乘法正好相反,因此把整式乘法公式反過(guò)來(lái)寫(xiě),就得到多項(xiàng)式因式分解的公式,主要的有以下三個(gè):
a2-b2=(a+b)(a-b);
a2±ab+b2=(a±b)2.
在運(yùn)用公式因式分解時(shí),要注意:
(1)每個(gè)公式的形式與特點(diǎn),通過(guò)對(duì)多項(xiàng)式的項(xiàng)數(shù)、次數(shù)等的總體分析來(lái)確定,是否可以用公式分解以及用哪個(gè)公式分解,通常是,當(dāng)多項(xiàng)式是二項(xiàng)式時(shí),考慮用平方差公式分解;當(dāng)多項(xiàng)式是三項(xiàng)時(shí),應(yīng)考慮用完全平方公式分解;(2)在有些情況下,多項(xiàng)式不一定能直接用公式,需要進(jìn)行適當(dāng)?shù)慕M合、變形、代換后,再使用公式法分解;(3)當(dāng)多項(xiàng)式各項(xiàng)有公因式時(shí),應(yīng)該首先考慮提公因式,然后再運(yùn)用公式分解.
五、布置作業(yè),專(zhuān)題突破
八年級(jí)上冊(cè)教案數(shù)學(xué)教案篇4
一、教學(xué)目標(biāo)
1.了解分式、有理式的概念.
2.理解分式有意義的條件,能熟練地求出分式有意義的條件.
二、重點(diǎn)、難點(diǎn)
1.重點(diǎn):理解分式有意義的條件.
2.難點(diǎn):能熟練地求出分式有意義的條件.
三、課堂引入
1.讓學(xué)生填寫(xiě)P127[思考],學(xué)生自己依次填出:,,,.
2.學(xué)生看問(wèn)題:一艘輪船在靜水中的最大航速為30/h,它沿江以最大航速順流航行90所用時(shí)間,與以最大航速逆流航行60所用時(shí)間相等,江水的流速為多少?
請(qǐng)同學(xué)們跟著教師一起設(shè)未知數(shù),列方程.
設(shè)江水的流速為v/h.
輪船順流航行90所用的時(shí)間為小時(shí),逆流航行60所用時(shí)間小時(shí),所以=.
3.以上的式子,,,,有什么共同點(diǎn)?它們與分?jǐn)?shù)有什么相同點(diǎn)和不同點(diǎn)?
四、例題講解
P128例1.當(dāng)下列分式中的字母為何值時(shí),分式有意義.
[分析]已知分式有意義,就可以知道分式的分母不為零,進(jìn)一步解
出字母的取值范圍.
[補(bǔ)充提問(wèn)]如果題目為:當(dāng)字母為何值時(shí),分式無(wú)意義.你知道怎么解題嗎?這樣可以使學(xué)生一題二用,也可以讓學(xué)生更全面地感受到分式及有關(guān)概念.
(補(bǔ)充)例2.當(dāng)為何值時(shí),分式的值為0?
(1)(2)(3)
[分析]分式的值為0時(shí),必須同時(shí)滿足兩個(gè)條件:分母不能為零;分子為零,這樣求出的的解集中的公共部分,就是這類(lèi)題目的解.
[答案](1)=0(2)=2(3)=1
五、隨堂練習(xí)
1.判斷下列各式哪些是整式,哪些是分式?
9x+4,,,,,
2.當(dāng)x取何值時(shí),下列分式有意義?
(1)(2)(3)
3.當(dāng)x為何值時(shí),分式的值為0?
(1)(2)(3)
六、課后練習(xí)
1.下列代數(shù)式表示下列數(shù)量關(guān)系,并指出哪些是正是?哪些是分式?
(1)甲每小時(shí)做x個(gè)零件,則他8小時(shí)做零件個(gè),做80個(gè)零件需小時(shí).
(2)輪船在靜水中每小時(shí)走a千米,水流的速度是b千米/時(shí),輪船的順流速度是千米/時(shí),輪船的逆流速度是千米/時(shí).
(3)x與的差于4的商是.
2.當(dāng)x取何值時(shí),分式無(wú)意義?
3.當(dāng)x為何值時(shí),分式的值為0?
八年級(jí)上冊(cè)教案數(shù)學(xué)教案篇5
【教學(xué)目標(biāo)】
1、了解三角形的中位線的概念
2、了解三角形的中位線的性質(zhì)
3、探索三角形的中位線的性質(zhì)的一些簡(jiǎn)單的應(yīng)用
【教學(xué)重點(diǎn)、難點(diǎn)】
重點(diǎn):三角形的中位線定理。
難點(diǎn):三角形的中位線定理的證明中添加輔助線的思想方法。
【教學(xué)過(guò)程】
(一)創(chuàng)設(shè)情景,引入新課
1、如圖,為了測(cè)量一個(gè)池塘的寬BC,在池塘一側(cè)的平地上選一點(diǎn)A,再分別找出線段AB、AC的中點(diǎn)D、E,若測(cè)出DE的長(zhǎng),就可以求出池塘的寬BC,你知道這是為什么嗎?
2、動(dòng)手操作:剪一刀,將一張三角形紙片剪成一張三角形紙片和一張?zhí)菪渭埰?/p>
(1)如果要求剪得的兩張紙片能拼成平行的四邊形,剪痕的位置有什么要求?
(2)要把所剪得的兩個(gè)圖形拼成一個(gè)平行四邊形,可將其中的三角形做怎樣的圖形變換?
3、引導(dǎo)學(xué)生概括出中位線的概念。
問(wèn)題:(1)三角形有幾條中位線?(2)三角形的`中位線與中線有什么區(qū)別?
啟發(fā)學(xué)生得出:三角形的中位線的兩端點(diǎn)都是三角形邊的中點(diǎn),而三角形中線只有一個(gè)端點(diǎn)是邊中點(diǎn),另一端點(diǎn)上三角形的一個(gè)頂點(diǎn)。
4、猜想:DE與BC的關(guān)系?(位置關(guān)系與數(shù)量關(guān)系)
(二)、師生互動(dòng),探究新知
1、證明你的猜想
引導(dǎo)學(xué)生寫(xiě)出已知,求證,并啟發(fā)分析。
(已知:⊿ABC中,D、E分別是AB、AC的中點(diǎn),求證:DE∥BC,DE=1/2BC)
啟發(fā)1:證明直線平行的方法有哪些?(由角的相等或互補(bǔ)得出平行,由平行四邊形得出平行等)
啟發(fā)2:證明線段的倍分的方法有哪些?(截長(zhǎng)或補(bǔ)短)
學(xué)生分小組討論,教師巡回指導(dǎo),經(jīng)過(guò)分析后,師生共同完成推理過(guò)程,板書(shū)證明過(guò)程,強(qiáng)調(diào)有其他證法。
證明:如圖,以點(diǎn)E為旋轉(zhuǎn)中心,把⊿ADE繞點(diǎn)E,按順時(shí)針?lè)较蛐D(zhuǎn)180゜,得到⊿CFE,則D,E,F(xiàn)同在一直線上,DE=EF,且⊿ADE≌⊿CFE。
∴∠ADE=∠F,AD=CF,
∴AB∥CF。
又∵BD=AD=CF,
∴四邊形BCFD是平行四邊形(一組對(duì)邊平行且相等的四邊形是平行四邊形),
∴DF∥BC(根據(jù)什么?),
∴DE1/2BC
2、啟發(fā)學(xué)生歸納定理,并用文字語(yǔ)言表達(dá):三角形中位線平行于第三邊且等于第三邊的一半。
(三)學(xué)以致用、落實(shí)新知
1、練一練:已知三角形邊長(zhǎng)分別為6、8、10,順次連結(jié)各邊中點(diǎn)所得的三角形周長(zhǎng)是多少?
2、想一想:如果⊿ABC的三邊長(zhǎng)分別為a、b、c,AB、BC、AC各邊中點(diǎn)分別為D、E、F,則⊿DEF的周長(zhǎng)是多少?
3、例題:已知:如圖,在四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA的中點(diǎn)。
求證:四邊形EFGH是平行四邊形。
啟發(fā)1:由E,F(xiàn)分別是AB,BC的中點(diǎn),你會(huì)聯(lián)想到什么圖形?
啟發(fā)2:要使EF成為三角的中位線,應(yīng)如何添加輔助線?應(yīng)用三角形的中位線定理,能得到什么?你能得出EF∥GH嗎?為什么?
證明:如圖,連接AC。
∵EF是⊿ABC的中位線,
∴EF1/2AC(三角形的中位線平行于第三邊,并且等于第三邊的一半)。
同理,HG1/2AC。
∴EFHG。
∴四邊形EFGH是平行四邊形(一組對(duì)邊平行并且相等的四邊形是平行四邊形)
挑戰(zhàn):順次連結(jié)上題中,所得到的四邊形EFGH四邊中點(diǎn)得到一個(gè)四邊形,繼續(xù)作下去。。。你能得出什么結(jié)論?
(四)學(xué)生練習(xí),鞏固新知
1、請(qǐng)回答引例中的問(wèn)題(1)
2、如圖,在四邊形ABCD中,AB=CD,M,N,P分別是AD,BC,BD的中點(diǎn)。求證:∠PNM=∠PMN
(五)小結(jié)回顧,反思提高
今天你學(xué)到了什么?還有什么困惑?
八年級(jí)上冊(cè)教案數(shù)學(xué)教案篇6
教材分析
1本節(jié)課的主題:通過(guò)一系列的探究活動(dòng),引導(dǎo)學(xué)生從計(jì)算結(jié)果中總結(jié)出完全平方公式的兩種形式
1、以教材作為出發(fā)點(diǎn),依據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》,引導(dǎo)學(xué)生體會(huì)、參與科學(xué)探究過(guò)程。首先提出等號(hào)左邊的兩個(gè)相乘的多項(xiàng)式和等號(hào)右邊得出的三項(xiàng)有什么關(guān)系。通過(guò)學(xué)生自主、獨(dú)立的發(fā)現(xiàn)問(wèn)題,對(duì)可能的答案做出假設(shè)與猜想,并通過(guò)多次的檢驗(yàn),得出正確的結(jié)論。學(xué)生通過(guò)收集和處理信息、表達(dá)與交流等活動(dòng),獲得知識(shí)、技能、方法、態(tài)度特別是創(chuàng)新精神和實(shí)踐能力等方面的發(fā)展。
2、用標(biāo)準(zhǔn)的數(shù)學(xué)語(yǔ)言得出結(jié)論,使學(xué)生感受科學(xué)的嚴(yán)謹(jǐn),啟迪學(xué)習(xí)態(tài)度和方法。
學(xué)情分析
1、在學(xué)習(xí)本課之前應(yīng)具備的基本知識(shí)和技能:
①同類(lèi)項(xiàng)的定義。
②合并同類(lèi)項(xiàng)法則
③多項(xiàng)式乘以多項(xiàng)式法則。
2、學(xué)習(xí)者對(duì)即將學(xué)習(xí)的內(nèi)容已經(jīng)具備的水平:
在學(xué)習(xí)完全平方公式之前,學(xué)生已經(jīng)能夠整理出公式的右邊形式。這節(jié)課的目的就是讓學(xué)生從等號(hào)的左邊形式和右邊形式之間的關(guān)系,總結(jié)出公式的應(yīng)用方法。
教學(xué)目標(biāo)
(一)教學(xué)目標(biāo):
1、經(jīng)歷探索完全平方公式的過(guò)程,進(jìn)一步發(fā)展符號(hào)感和推力能力。
2、會(huì)推導(dǎo)完全平方公式,并能運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算。
(二)知識(shí)與技能:經(jīng)歷從具體情境中抽象出符號(hào)的過(guò)程,認(rèn)識(shí)有理
數(shù)、實(shí)數(shù)、代數(shù)式、、;掌握必要的運(yùn)算,(包括估算)技能;探索具體問(wèn)題中的數(shù)量關(guān)系和變化規(guī)律,并能運(yùn)用代數(shù)式、、不等式、函數(shù)等進(jìn)行描述。
(四)解決問(wèn)題:能結(jié)合具體情景發(fā)現(xiàn)并提出數(shù)學(xué)問(wèn)題;嘗試從不同角度尋求解決問(wèn)題的方法,并能有效地解決問(wèn)題,嘗試評(píng)價(jià)不同方法之間的差異;通過(guò)對(duì)解決問(wèn)題過(guò)程的反思,獲得解決問(wèn)題的經(jīng)驗(yàn)。
(五)情感與態(tài)度:敢于面對(duì)數(shù)學(xué)活動(dòng)中的困難,并有獨(dú)立克服困難和運(yùn)用知識(shí)解決問(wèn)題的成功體驗(yàn),有學(xué)好數(shù)學(xué)的自信心;并尊重與理解他人的見(jiàn)解;能從交流中獲益。
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):能運(yùn)用完全平方公式進(jìn)行簡(jiǎn)單的計(jì)算。
難點(diǎn):會(huì)推導(dǎo)完全平方公式
教學(xué)過(guò)程
教學(xué)過(guò)程設(shè)計(jì)如下:
〈一〉、提出問(wèn)題
[引入]同學(xué)們,前面我們學(xué)習(xí)了多項(xiàng)式乘多項(xiàng)式法則和合并同類(lèi)項(xiàng)法則,通過(guò)運(yùn)算下列四個(gè)小題,你能總結(jié)出結(jié)果與多項(xiàng)式中兩個(gè)單項(xiàng)式的關(guān)系嗎?
(2m+3n)2=_______________,(-2m-3n)2=______________,
(2m-3n)2=_______________,(-2m+3n)2=_______________。
〈二〉、分析問(wèn)題
1、[學(xué)生回答]分組交流、討論
(2m+3n)2=4m2+12mn+9n2,(-2m-3n)2=4m2+12mn+9n2,
(2m-3n)2=4m2-12mn+9n2,(-2m+3n)2=4m2-12mn+9n2。
(1)原式的特點(diǎn)。
(2)結(jié)果的項(xiàng)數(shù)特點(diǎn)。
(3)三項(xiàng)系數(shù)的特點(diǎn)(特別是符號(hào)的特點(diǎn))。
(4)三項(xiàng)與原多項(xiàng)式中兩個(gè)單項(xiàng)式的關(guān)系。
2、[學(xué)生回答]總結(jié)完全平方公式的語(yǔ)言描述:
兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;
兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。
3、[學(xué)生回答]完全平方公式的數(shù)學(xué)表達(dá)式:
(a+b)2=a2+2ab+b2;
(a-b)2=a2-2ab+b2.
〈三〉、運(yùn)用公式,解決問(wèn)題
1、口答:(搶答形式,活躍課堂氣氛,激發(fā)學(xué)生的學(xué)習(xí)積極性)
(m+n)2=____________,(m-n)2=_______________,
(-m+n)2=____________,(-m-n)2=______________,
(a+3)2=______________,(-c+5)2=______________,
(-7-a)2=______________,(0.5-a)2=______________.
2、判斷:
()①(a-2b)2=a2-2ab+b2
()②(2m+n)2=2m2+4mn+n2
()③(-n-3m)2=n2-6mn+9m2
()④(5a+0.2b)2=25a2+5ab+0.4b2
()⑤(5a-0.2b)2=5a2-5ab+0.04b2
()⑥(-a-2b)2=(a+2b)2
()⑦(2a-4b)2=(4a-2b)2
()⑧(-5m+n)2=(-n+5m)2
3、一現(xiàn)身手
①(x+y)2=______________;②(-y-x)2=_______________;
③(2x+3)2=_____________;④(3a-2)2=_______________;
⑤(2x+3y)2=____________;⑥(4x-5y)2=______________;
⑦(0.5m+n)2=___________;⑧(a-0.6b)2=_____________.
〈四〉、[學(xué)生小結(jié)]
你認(rèn)為完全平方公式在應(yīng)用過(guò)程中,需要注意那些問(wèn)題?
(1)公式右邊共有3項(xiàng)。
(2)兩個(gè)平方項(xiàng)符號(hào)永遠(yuǎn)為正。
(3)中間項(xiàng)的符號(hào)由等號(hào)左邊的兩項(xiàng)符號(hào)是否相同決定。
(4)中間項(xiàng)是等號(hào)左邊兩項(xiàng)乘積的2倍。
〈五〉、探險(xiǎn)之旅
(1)(-3a+2b)2=________________________________
(2)(-7-2m)2=__________________________________
(3)(-0.5m+2n)2=_______________________________
(4)(3/5a-1/2b)2=________________________________
(5)(mn+3)2=__________________________________
(6)(a2b-0.2)2=_________________________________
(7)(2xy2-3x2y)2=_______________________________
(8)(2n3-3m3)2=________________________________
板書(shū)設(shè)計(jì)
完全平方公式
兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;(a+b)2=a2+2ab+b2;
兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。(a-b)2=a2-2ab+b2
八年級(jí)上冊(cè)教案數(shù)學(xué)教案篇7
(一)運(yùn)用公式法:
我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過(guò)來(lái)就是把多項(xiàng)式分解因式。于是有:
a2-b2=(a+b)(a-b)
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
如果把乘法公式反過(guò)來(lái),就可以用來(lái)把某些多項(xiàng)式分解因式。這種分解因式的方法叫做運(yùn)用公式法。
(二)平方差公式
1.平方差公式
(1)式子:a2-b2=(a+b)(a-b)
(2)語(yǔ)言:兩個(gè)數(shù)的平方差,等于這兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積。這個(gè)公式就是平方差公式。
(三)因式分解
1.因式分解時(shí),各項(xiàng)如果有公因式應(yīng)先提公因式,再進(jìn)一步分解。
2.因式分解,必須進(jìn)行到每一個(gè)多項(xiàng)式因式不能再分解為止。
(四)完全平方公式
(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反過(guò)來(lái),就可以得到:
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
這就是說(shuō),兩個(gè)數(shù)的平方和,加上(或者減去)這兩個(gè)數(shù)的積的2倍,等于這兩個(gè)數(shù)的和(或者差)的平方。
把a(bǔ)2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。
上面兩個(gè)公式叫完全平方公式。
(2)完全平方式的形式和特點(diǎn)
①項(xiàng)數(shù):三項(xiàng)
②有兩項(xiàng)是兩個(gè)數(shù)的的平方和,這兩項(xiàng)的符號(hào)相同。
③有一項(xiàng)是這兩個(gè)數(shù)的積的兩倍。
(3)當(dāng)多項(xiàng)式中有公因式時(shí),應(yīng)該先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示單項(xiàng)式,也可以表示多項(xiàng)式。這里只要將多項(xiàng)式看成一個(gè)整體就可以了。
(5)分解因式,必須分解到每一個(gè)多項(xiàng)式因式都不能再分解為止。
(五)分組分解法
我們看多項(xiàng)式am+an+bm+bn,這四項(xiàng)中沒(méi)有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.
如果我們把它分成兩組(am+an)和(bm+bn),這兩組能分別用提取公因式的方法分別分解因式.
原式=(am+an)+(bm+bn)
=a(m+n)+b(m+n)
做到這一步不叫把多項(xiàng)式分解因式,因?yàn)樗环弦蚴椒纸獾囊饬x.但不難看出這兩項(xiàng)還有公因式(m+n),因此還能繼續(xù)分解,所以
原式=(am+an)+(bm+bn)
=a(m+n)+b(m+n)
=(m+n)?(a+b)。
這種利用分組來(lái)分解因式的方法叫做分組分解法.從上面的例子可以看出,如果把一個(gè)多項(xiàng)式的項(xiàng)分組并提取公因式后它們的另一個(gè)因式正好相同,那么這個(gè)多項(xiàng)式就可以用分組分解法來(lái)分解因式。