写方案网_方案策划方案模板下载

寫方案網 > 教學教案 > 數學教案 >

初二數學創意設計教案

時間: 新華 數學教案

初二數學創意設計教案篇1

一、學習目標:1.使學生了解運用公式法分解因式的意義;

2.使學生掌握用平方差公式分解因式

二、重點難點

重點:掌握運用平方差公式分解因式.

難點:將單項式化為平方形式,再用平方差公式分解因式;

學習方法:歸納、概括、總結

三、合作學習

創設問題情境,引入新課

在前兩學時中我們學習了因式分解的定義,即把一個多項式分解成幾個整式的積的形式,還學習了提公因式法分解因式,即在一個多項式中,若各項都含有相同的因式,即公因式,就可以把這個公因式提出來,從而將多項式化成幾個因式乘積的形式.

如果一個多項式的各項,不具備相同的因式,是否就不能分解因式了呢?當然不是,只要我們記住因式分解是多項式乘法的相反過程,就能利用這種關系找到新的因式分解的方法,本學時我們就來學習另外的一種因式分解的方法——公式法.

1.請看乘法公式

(a+b)(a-b)=a2-b2(1)

左邊是整式乘法,右邊是一個多項式,把這個等式反過來就是

a2-b2=(a+b)(a-b)(2)

左邊是一個多項式,右邊是整式的乘積.大家判斷一下,第二個式子從左邊到右邊是否是因式分解?

利用平方差公式進行的因式分解,第(2)個等式可以看作是因式分解中的平方差公式.

a2-b2=(a+b)(a-b)

2.公式講解

如x2-16

=(x)2-42

=(x+4)(x-4).

9m2-4n2

=(3m)2-(2n)2

=(3m+2n)(3m-2n)

四、精講精練

例1、把下列各式分解因式:

(1)25-16x2;(2)9a2-b2.

例2、把下列各式分解因式:

(1)9(m+n)2-(m-n)2;(2)2x3-8x.

補充例題:判斷下列分解因式是否正確.

(1)(a+b)2-c2=a2+2ab+b2-c2.

(2)a4-1=(a2)2-1=(a2+1)?(a2-1).

五、課堂練習教科書練習

六、作業1、教科書習題

2、分解因式:x4-16x3-4x4x2-(y-z)2

3、若x2-y2=30,x-y=-5求x+y

初二數學創意設計教案篇2

教學目標:

1、知識目標:使學生掌握有理數的減法法則,熟練地進行有理數的減法運算。

2、能力目標:培養學生探究思維能力和分析解決問題的能力

3、情感目標:使學生了解加與減兩種運算的對立統一的關系,了解數學中轉化的數學思想方法,滲透辯證唯物主義思想,培養探究分析數學知識方法的興趣。

(三)重點、難點:

重點:有理數的減法法則,熟練地進行有理數的減法運算

難點:理解有理數減法的意義,正確熟練地進行有理數的減法運算

二、說教學方法:

根據本節教材內容和學生的實際水平,為了更有效地突出重點,突破難點,按照學生的認知規律,遵循教師為主導,學生為主體,訓練為主線的指導思想,我將采用探究發現法、多媒體輔助教學方法等。教學中教師精心設計一個又一個帶有啟發性和思考性的問題,創設問題情景,誘導學生思考,教師并適時運用電教多媒體動畫演示,激發學生探索知識的欲望來達到對知識的發現,并自我探索找出規律,使學生始終處于主動探索問題的積極狀態,從而培養思維能力。

附教學工具:溫度計、投影儀、多媒體

三、說學法:

根據學法指導自主性的原則,讓學生在教師創設的問題情境下,通過教師的啟發點撥,學生的積極思考努力下,自主參與知識的發生、發展、發現的過程,使學生掌握了知識,體現了素質教育中學生學習能力的培養問題,達到教學的目的。

四、說教學程序:

(一)引入課題環節:

1、復習有理數的加法法則,為新課的講授作好鋪墊。

2、(提問)用算式表示:與-3的和等于-10的數。

(根據學過的知識,引導學生列出減法算式后提出問題:怎樣進行這里的減法運算呢?有理數的減法運算法則是什么呢?由問題的給出,激發學生探求解決問題方法的興趣,從而引出本節課的課題。

(二)新課講解環節:

1、通過投影儀給出以下算式:

減法加法

(+10)-(+3)=+7(+10)+(-3)=+7

讓學生比較上面這兩個算式并討論后得出:

(+10)-(+3)=(+10)+(-3)

再給出以下算式:

減法加法

(+5)-(+2)=+3(+5)+(-2)=+3

繼續讓學生比較上面這兩個算式并討論后得出:

(+5)-(+2)=(+5)+(-2)

從而,它啟發我們有理數的減法可以轉化成加法進行

2、講解課本p80的內容,回答復習題2提出的問題即如何求(-10)-(-3)的結果。通過分析講解,請學生自己歸納出有理數的減法法則,最后老師再完整地總結出法則。

文字敘述:減去一個數,等于加上這個數的相反數

字母表示:a-b=a+(-b)(說明:簡明的表示方法,體現字母表示數的優越性,

實際運算時會更加方便)

強調運用法則時:被減數不變,減號變加號,減數變成其相反數

減數變號

(減法============加法)

3、出示溫度計,用多媒體出現(如p81的圖2-20),并進行動畫演示,通過求15℃比5℃高多少?15℃比-5℃高多少?的實例來說明減法法則的合理性以及有理數減法的實際意義。同時進行練習反饋:課本p82的練習1,4、通過例題教學使學生鞏固方法,初步具備解決問題的能力。

例1.計算:(1)(-3)-(-5);(2)0-7

例2.計算(1)7.2-(-4.8);(2)(-3-)-5

說明:講解時注意讓學生復述有理數法減法法則,加深學生對法則的認識,并注意歸納有理數減法的規律,而不機械地將減法轉化成加法,為今后進一步學習減法運算逐步省略化成加法的中間步驟作準備。

(三)鞏固練習環節:

讓學生完成課本p82的練習2、3,鞏固有理數減法法則的運用,強化學生對這節課的掌握。第2題口答,第3題請6個學生上臺板演。對回答好的同學給予表揚肯定,如果有錯誤,請其他同學糾正。

(四)課堂小結環節:(師生共同完成)

本節課學習了有理數的減法運算,進行有理數的減法運算時轉化成加法進行計算,即a-b=a+(-b)

(五)布置課后作業:課本p83習題2.6的2、3、4、5的偶數題

通過作業反饋對學生所學知識掌握的效果,以利課后解決學生尚有疑難的地方。

初二數學創意設計教案篇3

1.通過類比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0),分清二次項及其系數、一次項及其系數與常數項等概念.

2.了解一元二次方程的解的概念,會檢驗一個數是不是一元二次方程的解.

重點

通過類比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0)和一元二次方程的解等概念,并能用這些概念解決簡單問題.

難點

一元二次方程及其二次項系數、一次項系數和常數項的識別.

活動1復習舊知

1.什么是方程?你能舉一個方程的例子嗎?

2.下列哪些方程是一元一次方程?并給出一元一次方程的概念和一般形式.

(1)2x-1(2)mx+n=0(3)1x+1=0(4)x2=1

3.下列哪個實數是方程2x-1=3的解?并給出方程的解的概念.

A.0B.1C.2D.3

活動2探究新知

根據題意列方程.

1.教材第2頁問題1.

提出問題:

(1)正方形的大小由什么量決定?本題應該設哪個量為未知數?

(2)本題中有什么數量關系?能利用這個數量關系列方程嗎?怎么列方程?

(3)這個方程能整理為比較簡單的形式嗎?請說出整理之后的方程.

2.教材第2頁問題2.

提出問題:

(1)本題中有哪些量?由這些量可以得到什么?

(2)比賽隊伍的數量與比賽的場次有什么關系?如果有5個隊參賽,每個隊比賽幾場?一共有20場比賽嗎?如果不是20場比賽,那么究竟比賽多少場?

(3)如果有x個隊參賽,一共比賽多少場呢?

3.一個數比另一個數大3,且兩個數之積為0,求這兩個數.

提出問題:

本題需要設兩個未知數嗎?如果可以設一個未知數,那么方程應該怎么列?

4.一個正方形的面積的2倍等于25,這個正方形的邊長是多少?

活動3歸納概念

提出問題:

(1)上述方程與一元一次方程有什么相同點和不同點?

(2)類比一元一次方程,我們可以給這一類方程取一個什么名字?

(3)歸納一元二次方程的概念.

1.一元二次方程:只含有________個未知數,并且未知數的次數是________,這樣的________方程,叫做一元二次方程.

2.一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次項,a是二次項系數;bx是一次項,b是一次項系數;c是常數項.

提出問題:

(1)一元二次方程的一般形式有什么特點?等號的左、右分別是什么?

(2)為什么要限制a≠0,b,c可以為0嗎?

(3)2x2-x+1=0的一次項系數是1嗎?為什么?

3.一元二次方程的解(根):使一元二次方程左右兩邊相等的未知數的值叫做一元二次方程的解(根).

活動4例題與練習

例1在下列方程中,屬于一元二次方程的是________.

(1)4x2=81;(2)2x2-1=3y;(3)1x2+1x=2;

(4)2x2-2x(x+7)=0.

總結:判斷一個方程是否是一元二次方程的依據:(1)整式方程;(2)只含有一個未知數;(3)含有未知數的項的次數是2.注意有些方程化簡前含有二次項,但是化簡后二次項系數為0,這樣的方程不是一元二次方程.

例2教材第3頁例題.

例3以-2為根的一元二次方程是()

A.x2+2x-1=0B.x2-x-2=0

C.x2+x+2=0D.x2+x-2=0

總結:判斷一個數是否為方程的解,可以將這個數代入方程,判斷方程左、右兩邊的值是否相等.

練習:

1.若(a-1)x2+3ax-1=0是關于x的一元二次方程,那么a的取值范圍是________.

2.將下列一元二次方程化為一般形式,并分別指出它們的二次項系數、一次項系數和常數項.

(1)4x2=81;(2)(3x-2)(x+1)=8x-3.

3.教材第4頁練習第2題.

4.若-4是關于x的一元二次方程2x2+7x-k=0的一個根,則k的值為________.

答案:1.a≠1;2.略;3.略;4.k=4.

活動5課堂小結與作業布置

課堂小結

我們學習了一元二次方程的哪些知識?一元二次方程的一般形式是什么?一般形式中有什么限制?你能解一元二次方程嗎?

作業布置

教材第4頁習題21.1第1~7題.

初二數學創意設計教案篇4

教學目標

1、知道解一元二次方程的基本思路是“降次”化一元二次方程為一元一次方程。

2、學會用因式分解法和直接開平方法解形如(ax+b)2-k=0(k≥0)的方程。

3、引導學生體會“降次”化歸的思路。

重點難點

重點:掌握用因式分解法和直接開平方法解形如(ax+b)2-k=0(k≥0)的方程。

難點:通過分解因式或直接開平方將一元二次方程降次為一元一次方程。

教學過程

(一)復習引入

1、判斷下列說法是否正確

(1)若p=1,q=1,則pq=l(),若pq=l,則p=1,q=1();

(2)若p=0,g=0,則pq=0(),若pq=0,則p=0或q=0();

(3)若x+3=0或x-6=0,則(x+3)(x-6)=0(),

若(x+3)(x-6)=0,則x+3=0或x-6=0();

(4)若x+3=或x-6=2,則(x+3)(x-6)=1(),

若(x+3)(x-6)=1,則x+3=或x-6=2()。

答案:(1)√,×。(2)√,√。(3)√,√。(4)√,×。

2、填空:若x2=a;則x叫a的,x=;若x2=4,則x=;

若x2=2,則x=。

答案:平方根,±,±2,±。

(二)創設情境

前面我們已經學了一元一次方程和二元一次方程組的解法,解二元一次方程組的基本思路是什么?(消元、化二元一次方程組為一元一次方程)。由解二元一次方程組的基本思路,你能想出解一元二次方程的基本思路嗎?

引導學生思考得出結論:解一元二次方程的基本思路是“降次”化一元二次方程為一元一次方程。

給出1.1節問題一中的方程:(35-2x)2-900=0。

問:怎樣將這個方程“降次”為一元一次方程?

(三)探究新知

讓學生對上述問題展開討論,教師再利用“復習引入”中的內容引導學生,按課本P.6那樣,用因式分解法和直接開平方法,將方程(35-2x)2-900=0“降次”為兩個一元一次方程來解。讓學生知道什么叫因式分解法和直接開平方法。

(四)講解例題

展示課本P.7例1,例2。

按課本方式引導學生用因式分解法和直接開平方法解一元二次方程。

引導同學們小結:對于形如(ax+b)2-k=0(k≥0)的方程,既可用因式分解法解,又可用直接開平方法解。

因式分解法的基本步驟是:把方程化成一邊為0,另一邊是兩個一次因式的乘積(本節課主要是用平方差公式分解因式)的形式,然后使每一個一次因式等于0,分別解兩個一元一次方程,得到的兩個解就是原一元二次方程的解。

直接開平方法的步驟是:把方程變形成(ax+b)2=k(k≥0),然后直接開平方得ax+b=和ax+b=-,分別解這兩個一元一次方程,得到的解就是原一元二次方程的解。

注意:(1)因式分解法適用于一邊是0,另一邊可分解成兩個一次因式乘積的一元二次方程;

(2)直接開平方法適用于形如(ax+b)2=k(k≥0)的方程,由于負數沒有平方根,所以規定k≥0,當k<0時,方程無實數解。

(五)應用新知

課本P.8,練習。

(六)課堂小結

1、解一元二次方程的基本思路是什么?

2、通過“降次”,把—元二次方程化為兩個一元一次方程的方法有哪些?基本步驟是什么?

3、因式分解法和直接開平方法適用于解什么形式的一元二次方程?

(七)思考與拓展

不解方程,你能說出下列方程根的情況嗎?

(1)-4x2+1=0;(2)x2+3=0;(3)(5-3x)2=0;(4)(2x+1)2+5=0。

答案:(1)有兩個不相等的實數根;(2)和(4)沒有實數根;(3)有兩個相等的實數根

通過解答這個問題,使學生明確一元二次方程的解有三種情況。

布置作業

初二數學創意設計教案篇5

教學目的

通過分析儲蓄中的數量關系、商品利潤等有關知識,經歷運用方程解決實際問題的過程,進一步體會方程是刻畫現實世界的有效數學模型。

重點、難點

1.重點:

探索這些實際問題中的等量關系,由此等量關系列出方程。

2.難點:

找出能表示整個題意的等量關系。

教學過程

一、復習

1.儲蓄中的利息、本金、利率、本利和等含義,關系:利息=本金×年利率×年數

本利和=本金×利息×年數+本金

2.商品利潤等有關知識。

利潤=售價—成本;=商品利潤率

二、新授

問:小明爸爸前年存了年利率為2.43%的二年期定期儲蓄,今年到期后,扣除利息稅,所得利息正好為小明買了一只價值48.6元的計算器,問小明爸爸前年存了多少元?

利息—利息稅=48.6

可設小明爸爸前年存了x元,那么二年后共得利息為

2.43%×X×2,利息稅為2.43%X×2×20%

根據等量關系,得2.43%x·2—2.43%x×2×20%=48.6

問,扣除利息的20%,那么實際得到的利息是多少?扣除利息的20%,實際得到利息的80%,因此可得

2.43%x·2.80%=48.6

解方程,得x=1250

例:一家商店將某種服裝按成本價提高40%后標價,又以8折(即按標價的80%)優惠賣出,結果每件仍獲利15元,那么這種服裝每件的成本是多少元?

大家想一想這15元的利潤是怎么來的?

標價的80%(即售價)-成本=15

若設這種服裝每件的成本是x元,那么

每件服裝的標價為:(1+40%)x

每件服裝的實際售價為:(1+40%)x·80%

每件服裝的利潤為:(1+40%)x·80%—x

由等量關系,列出方程:

(1+40%)x·80%—x=15

解方程,得x=125

答:每件服裝的成本是125元。

三、鞏固練習

教科書第15頁,練習1、2。

四、小結

當運用方程解決實際問題時,首先要弄清題意,從實際問題中抽象出數學問題,然后分析數學問題中的等量關系,并由此列出方程;求出所列方程的解;檢驗解的合理性。應用一元一次方程解決實際問題的關鍵是:根據題意首先尋找“等量關系”。

初二數學創意設計教案篇6

教學目標:

1.知道換算關系

2.會寫數讀數

鞏固數感

教學重難點:會寫數讀數

教學過程:

1、我們學過了計數器上從右向左依次是:個位、十位、百位、千位、萬位。其中位是萬位、最低位是個位。

2、10個1是10,10個10是100,10個100是1000,10個1000是10000。

3、你還能用自己的話說說嗎?

4、數一數

10個10個的數,從2630數到3480

100個100個的數,從8300數到10000。

1000個1000個的數,從1000數到10000。

5、讀數

8267932792072003900010000368083007048

讀數的時候應該注意什么?

6、寫數

一萬一千一千九百三千零五十千零九兩千一百零八

六千零一十四千零五十八

7、2046420614261562

這四個數中的2有什么不同?

8、一個數千位上是6,百位上是5,十位上是6,這個數是(),讀作()。

一個數千位上是5,百位上是7,個位上是8,這個數是(),讀作()

一個數個位上是6,百位上是5,十位上是6,這個數是(),讀作()

一個數有5個千,6個百,6個十,這個數是()

一個數有6個千,3個1,這個數是()

一個數有10個1000,這個數是()

一個一個的數,跟1000相鄰的兩個數是()()

十個十個的數,跟1000相鄰的兩個數是()()

一百個一百個的數,跟1000相鄰的兩個數是()()

500和900比,()離600更近。

板書設計:各練習題

課后小結:

25223 主站蜘蛛池模板: 渗透仪-直剪仪-三轴仪|苏州昱创百科 | 工业CT-无锡璟能智能仪器有限公司| 采暖炉_取暖炉_生物质颗粒锅炉_颗粒壁炉_厂家加盟批发_烟台蓝澳采暖设备有限公司 | 结晶点测定仪-润滑脂滴点测定仪-大连煜烁 | 电子巡更系统-巡检管理系统-智能巡检【金万码】 | 哈希PC1R1A,哈希CA9300,哈希SC4500-上海鑫嵩实业有限公司 | 东莞螺丝|东莞螺丝厂|东莞不锈钢螺丝|东莞组合螺丝|东莞精密螺丝厂家-东莞利浩五金专业紧固件厂家 | 滚珠丝杆升降机_螺旋升降机_丝杠升降机-德迈传动 | 质检报告_CE认证_FCC认证_SRRC认证_PSE认证_第三方检测机构-深圳市环测威检测技术有限公司 | 拉力机-万能试验机-材料拉伸试验机-电子拉力机-拉力试验机厂家-冲击试验机-苏州皖仪实验仪器有限公司 | 大型多片锯,圆木多片锯,方木多片锯,板材多片锯-祥富机械有限公司 | 黑龙江「京科脑康」医院-哈尔滨失眠医院_哈尔滨治疗抑郁症医院_哈尔滨精神心理医院 | 盐城网络公司_盐城网站优化_盐城网站建设_盐城市启晨网络科技有限公司 | 首页-瓜尔胶系列-化工单体系列-油田压裂助剂-瓜尔胶厂家-山东广浦生物科技有限公司 | 除湿机|工业除湿机|抽湿器|大型地下室车间仓库吊顶防爆除湿机|抽湿烘干房|新风除湿机|调温/降温除湿机|恒温恒湿机|加湿机-杭州川田电器有限公司 | ET3000双钳形接地电阻测试仪_ZSR10A直流_SXJS-IV智能_SX-9000全自动油介质损耗测试仪-上海康登 | 山东led显示屏,山东led全彩显示屏,山东LED小间距屏,临沂全彩电子屏-山东亚泰视讯传媒有限公司 | 龙门加工中心-数控龙门加工中心厂家价格-山东海特数控机床有限公司_龙门加工中心-数控龙门加工中心厂家价格-山东海特数控机床有限公司 | 免联考国际MBA_在职MBA报考条件/科目/排名-MBA信息网 | 儿童语言障碍训练-武汉优佳加感统文化发展有限公司 | 深圳激光打标机_激光打标机_激光焊接机_激光切割机_同体激光打标机-深圳市创想激光科技有限公司 深圳快餐店设计-餐饮设计公司-餐饮空间品牌全案设计-深圳市勤蜂装饰工程 | 【官网】博莱特空压机,永磁变频空压机,螺杆空压机-欧能优 | 西点培训学校_法式西点培训班_西点师培训_西点蛋糕培训-广州烘趣西点烘焙培训学院 | 工控机-工业平板电脑-研华工控机-研越无风扇嵌入式box工控机 | 小程序开发公司_APP开发多少钱_软件开发定制_微信小程序制作_客户销售管理软件-济南小溪畅流网络科技有限公司 | 冷却塔改造厂家_不锈钢冷却塔_玻璃钢冷却塔改造维修-广东特菱节能空调设备有限公司 | 深圳快餐店设计-餐饮设计公司-餐饮空间品牌全案设计-深圳市勤蜂装饰工程 | 美国HASKEL增压泵-伊莱科elettrotec流量开关-上海方未机械设备有限公司 | 炭黑吸油计_测试仪,单颗粒子硬度仪_ASTM标准炭黑自销-上海贺纳斯仪器仪表有限公司(HITEC中国办事处) | 医养体检包_公卫随访箱_慢病随访包_家签随访包_随访一体机-济南易享医疗科技有限公司 | 集装箱标准养护室-集装箱移动式养护室-广州璟业试验仪器有限公司 | IP检测-检测您的IP质量 | 绿萝净除甲醛|深圳除甲醛公司|测甲醛怎么收费|培训机构|电影院|办公室|车内|室内除甲醛案例|原理|方法|价格立马咨询 | 交通信号灯生产厂家_红绿灯厂家_电子警察监控杆_标志杆厂家-沃霖电子科技 | 玻璃钢罐_玻璃钢储罐_盐酸罐厂家-河北华盛节能设备有限公司 | 植筋胶-粘钢胶-碳纤维布-碳纤维板-环氧砂浆-加固材料生产厂家-上海巧力建筑科技有限公司 | TYPE-C厂家|TYPE-C接口|TYPE-C防水母座|TYPE-C贴片-深圳步步精 | 印刷人才网 印刷、包装、造纸,中国80%的印刷企业人才招聘选印刷人才网! | 细砂提取机,隔膜板框泥浆污泥压滤机,螺旋洗砂机设备,轮式洗砂机械,机制砂,圆锥颚式反击式破碎机,振动筛,滚筒筛,喂料机- 上海重睿环保设备有限公司 | 食品级焦亚硫酸钠_工业级焦亚硫酸钠_焦亚硫酸钠-潍坊邦华化工有限公司 | 液压升降平台_剪叉式液压/导轨式升降机_传菜机定做「宁波日腾升降机厂家」 |